
Homework 3, Computational Complexity 2024

The deadline is 23:59 on Wednesday 4 December. Please submit your solutions on Moodle. Typing
your solutions using LATEX is strongly encouraged. The problems are meant to be worked on in groups
of 2–3 students. Please submit only one writeup per team. You are strongly encouraged to solve these
problems by yourself. If you must, you may use books or online resources to help solve homework problems,
but you must credit all such sources in your writeup and you must never copy material verbatim.

1 For functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} define their composition f ◦ g as the
function {0, 1}nm → {0, 1} given by

(f ◦ g)(x) := f(g(x1), . . . , g(xn)) where x = (x1, . . . , xn) ∈ ({0, 1}m)n.

(In the lecture, we discussed the special case of f = And and g = Or.) Show that decision tree
complexity Ddt behaves multiplicatively under composition:

Ddt(f ◦ g) = Ddt(f) · Ddt(g).

(Hint: For the “≥” direction, suppose we are given adversary strategies for f and g—how to
design an adversary strategy for f ◦ g?)

Solution: We first show that D(f ◦ g) ≤ D(f) · D(g). Fix the best decision tree A for solving
f and B for solving g (i.e. A has depth D(f) and B has depth D(g)). The following is a query
algorithm that computes f ◦ g on input (x1, . . . , xn). Run the tree A and whenever it asks for
the value of g(xi) for some i ∈ [n], run B on xi to get the value g(xi) and continue. Observe that
the number of queries on any path is at most D(f) · D(g).

We now prove that D(f ◦ g) ≥ D(f) · D(g). Let A be the best adversary for f and B be the
best adversary for g (i.e. A can delay the resolution of f by D(f) queries and likewise for B and
g). The following is an adversary for f ◦ g:

1. Instantiate n copies B1, . . . , Bn of adversary B.

2. Upon receiving query to bit xij with i ∈ [n] and j ∈ [m],

3. If adversary Bi can still delay the query without fixing the value of g(xi), respond with the
answer of Bi.

4. If adversary Bi cannot delay the fixing of the function anymore (i.e. D(g)− 1 have already
been made to that copy), then consult adversary A to decide how to fix the value of g(xi)
as to delay the fixing of f ◦ g as much as possible.

Each of the Bi adversaries can answer D(g)− 1 queries without fixing the value and the overall
adversary A can delay fixing the value of the overall f ◦ g for D(f) copies, so that the overall
adversary can handle ≥ D(f) · D(g) queries.

Page 1 (of 3)

CS-524 Computational Complexity • Fall 2024

2 Let us define a CNF formula F . We have a set of nodes [n] = {1, . . . , n} and each node i ∈ [n] is
associated with log n boolean variables xi ∈ {0, 1}logn. We identify the set {0, 1}logn with [n] so
that each xi encodes a pointer to another node in [n]. Thus there are altogether n log n many
variables x = (x1, . . . , xn). Each assignment x can be visualised as a directed graph Gx = ([n], E)
where (i, j) ∈ E iff i points to j (that is, xi = j). We add the following constraints to F :

1. First node points forward: x1 > 1.
2. Every node points either to itself (selfloop) or forward: xi ≥ i for all i ∈ [n].
3. No node points forward to a selfloop: (xi > i)→ (xx

i ̸= xi) for all i ∈ [n].

Note that each constraint above involves only O(log n) variables and hence they can be encoded
as a O(log n)-width CNF of size polynomial in n. This defines the formula F .

First, show that F is unsatisfiable. Second, show that any tree-like resolution proof of F
requires Ω(n) depth.

[Update: Turns out (thanks to Luca!) the formula F admits tree-like resolution refutations of
polynomial size. (For additional fun, prove this.) Thus, F is an example showing that tree-like
resolution proofs cannot be efficiently converted into balanced trees: there is a tree-like proof of
size S = poly(n) but no proof of depth logS = O(log n).]

Solution: To prove F is unsatisfiable, it is enough to show for every assignment x at least one
constraint is unsatisfied. We find one such constraint as follows: First we check if x1 = 1. If yes,
then we are done. Otherwise, we start from j = 1, i = x1 and repeat the following process, with
the invariant that xj = i: Each time, we compare xi with i, there are three outcomes:

• If xi < i, then the second constraint with respect to i is violated.
• If xi = i, as i = xj , i > j, the third constraint with respect to j is violated.
• We update j ← i, i← xi, and continue.

Since after each iteration, i is increasing, we can find an unsatisfied constraint after at most n
rounds, as desired.

To show any tree-like resolution proof of F requires Ω(n) depth, it suffices to prove the search
problem SearchF has decision tree depth at least Ω(n). To simplify our job, let us assume that
each time one can get all the bits of xi with unit cost. To prove the lower bound, we devise the
following adversary strategy: We maintain a node i which records the end of the path which
starts from 1 given by the partial query outcomes x ∈ {0, 1, ⋆}n (where ⋆ means unqueried).
Initially, i = 1. Each time, whenever xj is queried, the adversary answers

xj =

{
j j ̸= i

minxk=⋆ k j = i
.

It remains to show that the opponent cannot determine the answer unless n− 1 queries are made.
In fact, first note that nodes point to itself can never be a solution. Furthermore, unqueried
nodes may not be a solution since it can point to itself. Finally, for each node j on the path
start from 1 given by the partial assignment, let k = xj . Either xk ̸= ⋆ and xk > k, so j is not a
solution; or xk = ⋆, note that k < n by our choice of adversary, so k can point forwards, which
implies that j may not be a solution.

3 Give a reduction from the Set-Intersection problem (to be discussed in Lecture 11) to show that the
following two-party communication problem requires Ω(n) bits of (randomised) communication:

• Alice holds a graph GA = ([n], EA);
• Bob holds a graph GB = ([n], EB);
• Decide whether their union GA ∪GB = ([n], EA ∪ EB) contains a perfect matching.

Page 2 (of 3)

CS-524 Computational Complexity • Fall 2024

Solution: The reduction works as follows: In the Set-Intersection problem, Alice holds an
input x ∈ {0, 1}n, Bob holds an input y ∈ {0, 1}n. To decide if their inputs intersect, they
first construct their respect graph GA and GB without communicating: They share the same
vertex set [2n] = {(i, j) | i ∈ {1, . . . , n}, j ∈ {0, 1}}. Then Alice constructs the edge set
EA = {((i, 0), (i, 1) | xi = 0}, and similarly, Bob constructs EB = {((i, 0), (i, 1)) | yi = 0}.
Observe that if x intersects with y, namely, there exists i s.t. xi = yi = 1, then |EA ∪EB| ≤ n− 1
so GA ∪GB does not have a perfect matching. On the other hand, if for all i ∈ [n], either xi = 0
or yi = 0, then the edge ((i, 0), (i, 1)) is present in EA ∪ EB , so GA ∪GB has a perfect matching.
To conclude, if Alice and Bob can solve this problem with T (2n) bits of communication, then
they can solve Set-Intersection with T (2n) bits of communication. This implies that the problem
in the statement has communication complexity Ω(n).

Page 3 (of 3)

CS-524 Computational Complexity • Fall 2024

